

Windows and SQL Azure

Storage Deep Dive

Rainer Stropek

software architects gmbh

rainer@software-architects.at

Abstract

Elasticity is what the world of cloud computing is all about. Do you quickly need more

storage because of high load on your systems? No problem, in Windows Azure you

can store up to 100 TB with a single account and create new SQL clusters within a

few seconds. And the best: you just pay for what you really use. In this one day

workshop Rainer Stropek, MVP for Windows Azure, presents the storage technologies

of Windows and SQL Azure. Learn about blob and table storage as well as SQL

Azure, Microsoft‟s SQL Server in the cloud. Rainer will start by comparing the different

storage options and giving you advice when to use what. Next you will see all storage

systems of the Windows Azure Platform in action. The third part of the workshop dives

deeper into SQL Azure. Rainer will cover the underlying architecture of SQL Azure

including its security and firewall capabilities. You will see the differences between on-

premise SQL Server and SQL Azure and explore performance and cost benefits of the

different sharding approaches that are typical for scale-out scenarios in the cloud.

Introduction

• software architects gmbh

• Rainer Stropek

Developer, Speaker, Trainer

MVP for Windows Azure

rainer@timecockpit.com

 @rstropek

http://www.timecockpit.com

http://www.software-architects.com

http://www.software-architects.com/
http://www.software-architects.com/
http://www.software-architects.com/
http://www.software-architects.com/
mailto:rainer@timecockpit.com
http://www.timecockpit.com/
http://www.software-architects.com/
http://www.software-architects.com/
http://www.software-architects.com/

Agenda

• Storage in the Windows Azure Platform

• Windows Azure Storage

● Blob Storage

● Table Storage

● Queues

● Drives

• SQL Azure

About The Content

• Combination of publicly available material and

my own content

• External Sources

● Winodws Azure Platform Training Kit (WAPTK)

● TechEd North America 2011 (Channel 9)

● Windows Azure Bootcamp

http://www.microsoft.com/downloads/en/details.aspx?familyid=413e88f8-5966-4a83-b309-53b7b77edf78
http://channel9.msdn.com/Events/TechEd/NorthAmerica/2011/
http://www.azurebootcamp.com/

STORAGE IN THE WINDOWS

AZURE PLATFORM

Overview

Structure of a Cloud Platform

Access Resources/Data Sources

(ADO.NET EF, nHibernate, System.IO...)

Application Logic, Business Logic

UI (Web) UI (AJAX, RIA, Client)

External Services

TCP/TDS

HTTP/XML

(SOAP, REST…)
HTTP/HTML

HTTP/XML

(SOAP, REST…)

Stream

Structure of a Cloud Platform

Access Resources/Data Sources

(ADO.NET EF, nHibernate, System.IO...)

Application Logic, Business Logic

UI (Web) UI (AJAX, RIA, Client)

External Services

TCP/TDS

HTTP/XML

(SOAP, REST…)
HTTP/HTML

HTTP/XML

(SOAP, REST…)

Stream

Compute

(Scaleable)

Storage

Relational

Database

Secure

Integration

Structure of a Cloud Platform

Access Resources/Data Sources

(ADO.NET EF, nHibernate, System.IO...)

Application Logic, Business Logic

UI (Web) UI (AJAX, RIA, Client)

External Services

TCP/TDS

HTTP/XML

(SOAP, REST…)
HTTP/HTML

HTTP/XML

(SOAP, REST…)

Stream

Storage

Windows Azure Storage

• Storage in the Cloud

● Scalable, durable, and available

● Anywhere at anytime access

● Only pay for what the service uses

• Exposed via RESTful Web Services

● Use from Windows Azure Compute

● Use from anywhere on the internet

• Various storage abstractions

● Tables, Blobs, Queues, Drives

http://en.wikipedia.org/wiki/Representational_State_Transfer
http://msdn.microsoft.com/en-us/library/dd179463.aspx
http://msdn.microsoft.com/en-us/library/dd179376.aspx
http://msdn.microsoft.com/en-us/library/dd179353.aspx
http://go.microsoft.com/?linkid=9710117

Windows Azure

Fabric
Controller

Web Portal
(API)

L
B

L
B

D

N

S

Your
Service

Local Disks
Temporary Storage

Storage Services
Persistant Storage

When To Use What??

SQL Azure

• Strong programmming

model needed

• Need for complex ACID

transactions

• Restricted storage amount

acceptable (currently max.

50GB/DB)

• TDS is possible

Windows Azure Storage

• Low price (~1/65th

compared to SQL Azure)

• Auto-scale out Fast

• Large storage volumes

(many, many TBs)

• REST/HTTP needed

• NTFS needed (Drives)

• Queues needed

http://www.microsoft.com/windowsazure/sqlazure/database/
http://en.wikipedia.org/wiki/ACID
http://www.microsoft.com/windowsazure/storage/
http://www.microsoft.com/windowsazure/offers/

Price Comparison

• Think about...

● ...storage volume needed

● ...number of transactions

● ...programming effort

• Background information for Azure Storage Pricing

Web Edition

Per database/month

$9.99/month

(1-5 GB DB/month)

Business Edition

Starting at $99.99/month

(10-50 GB DB/month)

Per database/month

Storage
Per GB stored and

transactions
$0.15 GB/month

$0.01/10k transactions

http://blogs.msdn.com/b/windowsazurestorage/archive/2010/07/09/understanding-windows-azure-storage-billing-bandwidth-transactions-and-capacity.aspx

WINDOWS AZURE STORAGE

Introduction

Windows Azure Storage Account

• User specified globally unique account name

● Can choose geo-location to host storage account

• US – “North Central” and “South Central”

• Europe – “North” and “West”

• Asia – “East” and “Southeast”

● Can CDN Enable Account

• More details later

● Can co-locate storage account with compute account

• Explicitly or using affinity groups

• Accounts have two independent 512 bit shared secret keys

• 100TB per account

http://blogs.msdn.com/b/windowsazure/archive/2009/04/30/windows-azure-geo-location-live.aspx

Tools for Azure Storage

• Server Explorer in Visual Studio 2010

● Limited functionality

● Good for developer-specific tasks (e.g. Access

IntelliTrace data stored in Azure storage)

Tools for Azure Storage

• Cerebrata

● Cloud Storage Studio

● Azure Diagnostics Manager

• Azure Storage Explorer (Codeplex)

• CloudBerry Labs

● Explorer for Azure Blob Storage and other cloud storage services

• Gladinet

● Cloud Storage Tools

• and many more...

http://www.cerebrata.com/
http://azurestorageexplorer.codeplex.com/
http://cloudberrylab.com/?page=explorer-azure-pro
http://www.gladinet.com/

• Windows Azure Compute/Storage Emulator

aka DevFabric/DevStorage

• Port of the Windows Azure SDK free

• Provides a local “Mock” storage

• For debugging purposes

• To reduce costs

• To work offline

• Emulator ≠ Windows Azure

• For differences see MSDN

• Important: Predefined account name/key for emulator

• Testing in emulator alone is not enough!

Windows Azure Emulators

http://www.microsoft.com/windowsazure/sdk/
http://msdn.microsoft.com/en-us/library/gg433135.aspx

• Prerequisites

• Windows Azure SDK and Azure Tools for VS

• Visual Studio 2010

• IIS and SQL Server 2008 R2 (see also MSDN)

• Installation

• Install SDK and Tools

• Configure emulator (see also MSDN)

• You cannot access emulators over the network, only local

• Tip: Use e.g. reverse proxy to access emulators over the network (see e.g.

Emmanuel's Blog)

Windows Azure Emulators

http://www.microsoft.com/windowsazure/sdk/
http://msdn.microsoft.com/en-us/library/gg433136.aspx
http://msdn.microsoft.com/en-us/library/gg433131.aspx
http://blog.ehuna.org/2009/10/an_easier_way_to_access_the_wi.html

Storage Accounts

Demo Content

• Storage account management in Azure Portal

• Storage emulator

● UI

● Backing storage in local SQL Express

• Account name/key logic

● Primary/secondary key

• Show Visual Studio Server Explorer

• Show Cerebrata Cloud Storage Studio

The Storage Client API

• Underlying RESTful API

● API Reference see MSDN

● Can call these from any HTTP client

e.g. Flash, Silverlight, etc…

• Client API from SDK

Microsoft.WindowsAzure.StorageClient

● API Reference see MSDN

● Provides a strongly typed wrapper around REST services

• http://azurestoragesamples.codeplex.com/

http://msdn.microsoft.com/en-us/library/dd179355.aspx
http://msdn.microsoft.com/en-us/library/dd179380.aspx
http://azurestoragesamples.codeplex.com/
http://azurestoragesamples.codeplex.com/

Storage Security

• Windows Azure Storage provides simple security for

calls to storage service

● HTTPS endpoint

● Digitally sign requests for privileged operations

• Two 512bit symmetric keys per storage account

● Can be regenerated independently

• More granular security via Shared Access Signatures

● Details later

Windows Azure Storage Types

• Blobs

● Simple named files along with metadata for the file

• Drives

● Durable NTFS volumes for Windows Azure applications to use. Based

on Blobs.

• Tables

● Structured storage. A Table is a set of entities; an entity is a set of

properties

• Queues

● Reliable storage and delivery of messages for an application

BLOB STORAGE

Windows Azure Blob Storage

Blob Storage Concepts

Blob Container Account

contoso

images

PIC01.JPG

videos VID1.AVI

http://<account>.blob.core.windows.net/<container>/<blobname>

Pages/

Blocks

Block/Page

Block/Page

PIC02.JPG

Special $root
container

Blob Containers

• Multiple Containers per Account

● Special $root container

• Blob Container

● A container holds a set of blobs

● Set access policies at the container level

● Associate Metadata with Container

• Key/value pairs

● List the blobs in a container

• Including Blob Metadata and MD5

• NO search/query. i.e. no WHERE MetadataValue = ?

• Blobs Throughput

● Effectively in Partition of 1

● Throughput rates similar to disk reads (from within Azure DC)
• Target of 60MB/s per Blob

Blob Details

• Main Web Service Operations

● PutBlob, GetBlob, DeleteBlob, CopyBlob, SnapshotBlob, LeaseBlob

● Complete list see MSDN

● Consider garbage collection for delete operations

• Name reserved until garbage collected

• Associate Metadata with Blob

● Standard HTTP metadata/headers

(Cache-Control, Content-Encoding, Content-Type, etc)

● Metadata is <name, value> pairs, up to 8KB per blob

● Either as part of PutBlob or independently

• Blob always accessed by name

● Can include „/„ or other delimeter in name

e.g. /<container>/myblobs/blob.jpg

http://msdn.microsoft.com/en-us/library/dd135733.aspx

GET http://.../products?comp=list&delimiter=/

<BlobPrefix>Bikes</BlobPrefix>

<BlobPrefix>Canoes</BlobPrefix>
<BlobPrefix>Tents</BlobPrefix>

Enumerating Blobs

• List Blobs operation takes parameters

● Prefix

● Delimiter

● Include= (snapshots, metadata etc…)

GET http://.../products?comp=list&prefix=Tents&delimiter=/

<Blob>Tents/PalaceTent.wmv</Blob>

<Blob>Tents/ShedTent.wmv</Blob>

http://adventureworks.blob.core.windows.net/
Products/Bikes/SuperDuperCycle.jpg
Products/Bikes/FastBike.jpg
Products/Canoes/Whitewater.jpg
Products/Canoes/Flatwater.jpg
Products/Canoes/Hybrid.jpg
Products/Tents/PalaceTent.jpg
Products/Tents/ShedTent.jpg

http://msdn.microsoft.com/en-us/library/dd135734.aspx

Pagination

• Large lists of Blobs can be paginated

● Either set maxresults or;

● Exceed default value for maxresults (5000)

http://.../products?comp=list&prefix=Canoes&maxresults=2
 &marker=MarkerValue

<Blob>Canoes/Hybrid.jpg</Blob>

http://.../products?comp=list&prefix=Canoes&maxresults=2

<Blob>Canoes/Whitewater.jpg</Blob>

<Blob>Canoes/Flatwater.jpg</Blob>

<NextMarker>MarkerValue</NextMarker>

Blob Storage

Demo Content

• Create command line application

• Add Azure SDK references

• Create CloudStorageAccount

● Show different options

• List blobs in a container

• Upload a blob

• Download a blob

HowTo: Authenticate

// OPTION 1

var account = new CloudStorageAccount(

 new StorageCredentialsAccountAndKey("accountName", "accountkey"),

 true);

// OPTION 2

CloudStorageAccount.SetConfigurationSettingPublisher(

 (configName, setter) =>

 setter(RoleEnvironment.GetConfigurationSettingValue(configName)));

account = CloudStorageAccount.FromConfigurationSetting("settingsName");

// OPTION 3

account = CloudStorageAccount.Parse(

 RoleEnvironment.GetConfigurationSettingValue("settingsName"));

Blob Leases

• Lease Blob operation

● Returns a lease ID (x-ms-lease-id response header)

● Lease ID has to be passed to subsequent write operations

• Lock a blob for one minute

● Can be renewed, released and broken

● Does not lock the container (can be e.g. deleted while

there is an active lease)

• Not available in managed API

http://msdn.microsoft.com/en-us/library/ee691972.aspx

HowTo: Aquire Lease

public static string AcquireLease(this CloudBlob blob)

{

 var creds = blob.ServiceClient.Credentials;

 var transformedUri = new Uri(creds.TransformUri(blob.Uri.ToString()));

 var req = BlobRequest.Lease(transformedUri,

 90, // timeout (in seconds)

 LeaseAction.Acquire, // as opposed to "break" "release" or "renew"

 null); // name of the existing lease, if any

 blob.ServiceClient.Credentials.SignRequest(req);

 using (var response = req.GetResponse())

 {

 return response.Headers["x-ms-lease-id"];

 }

}

Source: http://blog.smarx.com/posts/leasing-windows-azure-blobs-using-the-storage-client-library

http://blog.smarx.com/posts/leasing-windows-azure-blobs-using-the-storage-client-library
http://blog.smarx.com/posts/leasing-windows-azure-blobs-using-the-storage-client-library
http://blog.smarx.com/posts/leasing-windows-azure-blobs-using-the-storage-client-library
http://blog.smarx.com/posts/leasing-windows-azure-blobs-using-the-storage-client-library
http://blog.smarx.com/posts/leasing-windows-azure-blobs-using-the-storage-client-library
http://blog.smarx.com/posts/leasing-windows-azure-blobs-using-the-storage-client-library
http://blog.smarx.com/posts/leasing-windows-azure-blobs-using-the-storage-client-library
http://blog.smarx.com/posts/leasing-windows-azure-blobs-using-the-storage-client-library
http://blog.smarx.com/posts/leasing-windows-azure-blobs-using-the-storage-client-library
http://blog.smarx.com/posts/leasing-windows-azure-blobs-using-the-storage-client-library
http://blog.smarx.com/posts/leasing-windows-azure-blobs-using-the-storage-client-library
http://blog.smarx.com/posts/leasing-windows-azure-blobs-using-the-storage-client-library
http://blog.smarx.com/posts/leasing-windows-azure-blobs-using-the-storage-client-library
http://blog.smarx.com/posts/leasing-windows-azure-blobs-using-the-storage-client-library
http://blog.smarx.com/posts/leasing-windows-azure-blobs-using-the-storage-client-library
http://blog.smarx.com/posts/leasing-windows-azure-blobs-using-the-storage-client-library
http://blog.smarx.com/posts/leasing-windows-azure-blobs-using-the-storage-client-library
http://blog.smarx.com/posts/leasing-windows-azure-blobs-using-the-storage-client-library

Two Types of Blobs Under the Hood

• Block Blob

● Targeted at streaming workloads

● Each blob consists of a sequence of blocks

• Each block is identified by a Block ID

• Uncommitted blocks are garbage collected after a week

● Size limit 200GB per blob

● Optimistic Concurrency via ETags

• Page Blob

● Targeted at random read/write workloads

● Each blob consists of an array of pages

• Each page is identified by its offset from the start of the blob

● Size limit 1TB per blob

● Optimistic or Pessimistic (locking) concurrency via Leases

Uploading a Block Blob

10 GB Movie

 Windows

Azure Storage

B
lo

c
k
 I

d
 1

B

lo
c
k
 I

d
 2

B
lo

c
k
 I

d
 3

B
lo

c
k
 I

d
 N

blobName = “TheBlob.wmv”;
PutBlock(blobName, blockId1,
block1Bits);
PutBlock(blobName, blockId2,
block2Bits);
…………
PutBlock(blobName, blockIdN,
blockNBits);
PutBlockList(blobName,

blockId1,…,blockIdN);

TheBlob.wmv TheBlob.wmv

HowTo: Upload Block Blobs
// Create a block blob consisting of three "files" (=blocks)

var blobRef = container.GetBlockBlobReference("MyBlob.dat");

string xmlBlockID, file1BlockID, file2BlockID;

blobRef.PutBlock(

 xmlBlockID = Convert.ToBase64String(new byte[] { 0 }),

 new MemoryStream(Encoding.UTF8.GetBytes("<root>...</root>")),

 null);

blobRef.PutBlock(

 file1BlockID = Convert.ToBase64String(new byte[] { 1 }),

 new MemoryStream(Encoding.UTF8.GetBytes("This is a test file!")),

 null);

blobRef.PutBlock(

 file2BlockID = Convert.ToBase64String(new byte[] { 2 }),

 new MemoryStream(Encoding.UTF8.GetBytes("This is a second test file!")),

 null);

// Commit creation of all "files" (=blocks)

blobRef.PutBlockList(new[] { xmlBlockID, file1BlockID, file2BlockID });

HowTo: Change Single Block
// Change a single "file" (=block) of the blob.

// Note that this shows how to upload a specific "file" (=block)

// without uploading the entire blob.

blobRef = container.GetBlockBlobReference("MyBlob.dat");

dictation.PutBlock(

 file1BlockID,

 new MemoryStream(Encoding.UTF8.GetBytes("This is a CHANGED test file!")),

 null);

// Display current content of the "file" (=block).

// Note that the content has NOT changed yet because the upload

// has not been committed.

var blobRef2 = container.GetBlockBlobReference("MyBlob.dat");

Console.WriteLine(DownloadTextFromBlob(blobRef2, 1));

// Now commit the change

UpdateBlobBlocks(blobRef);

HowTo: Change Single Block
public static string DownloadTextFromBlob(CloudBlockBlob blob, int blockIndex)

{

 var blocks = blob.DownloadBlockList();

 var transformedUri = new Uri(blob.ServiceClient.Credentials.TransformUri(

 blob.Uri.ToString()));

 var webRequest = BlobRequest.Get(transformedUri, 90, null,

 blocks.Take(blockIndex).Aggregate<ListBlockItem, long>(0,

 (agg, item) => agg + item.Size),

 blocks.Skip(blockIndex).First().Size, null);

 blob.ServiceClient.Credentials.SignRequest(webRequest);

 using (var response = webRequest.GetResponse())

 {

 using (var responseStream = response.GetResponseStream())

 {

 var buffer = new byte[blocks.Skip(blockIndex).First().Size];

 responseStream.Read(buffer, 0, buffer.Length);

 return Encoding.UTF8.GetString(buffer);

 }

 }

}

HowTo: Change Single Block
public static void UpdateBlobBlocks(CloudBlockBlob blob)

{

 var transformedUri = new Uri(blob.ServiceClient.Credentials.TransformUri(

 blob.Uri.ToString()));

 var webRequest = BlobRequest.PutBlockList(transformedUri, 90, new BlobProperties(),

 null);

 var blocks = blob.DownloadBlockList(new BlobRequestOptions()

 { BlobListingDetails = BlobListingDetails.UncommittedBlobs });

 var content = new StringBuilder();

 content.Append(@"<?xml version=""1.0"" encoding=""utf-8""?><BlockList>");

 foreach (var block in blocks) {

 content.Append("<Latest>");

 content.Append(block.Name);

 content.Append("</Latest>");

 }

 content.Append("</BlockList>");

 using (var stream = webRequest.GetRequestStream()) {

 byte[] contentBytes;

 stream.Write(contentBytes = Encoding.UTF8.GetBytes(content.ToString()),

 0, contentBytes.Length);

 }

 blob.ServiceClient.Credentials.SignRequest(webRequest);

 using (var response = webRequest.GetResponse()) { /* Process result */ }

}

Page Blob – Random Read/Write

PutPage 512, 2048
PutPage 0, 1024
ClearPage 512, 1536
PutPage 2048,2560

GetPageRange 0, 4096

0,512 1536,2560

GetBlob 1000, 2048

1536,2048

0

10 GB

1
0

 G
B

 A
d

d
re

s
s
 S

p
a

c
e

512

1024

1536

2048

2560

Blob Security

• Full public read access

● Anonymous reading of blobs

● Anonymous enumeration of blobs

• Public read access for blobs only

● Anonymous reading of blobs

• No public read access

• More granular control with Shared Access

Signatures

http://msdn.microsoft.com/en-us/library/ee393343.aspx
http://msdn.microsoft.com/en-us/library/ee393343.aspx

Shared Access Signatures

• Fine grain access rights to blobs and containers

• Sign URL with storage key – permit elevated rights

• Revocation

● Use short time periods and re-issue

● Use container level policy that can be deleted

• Two broad approaches

● Ad-hoc

• Note: Max. duration one hour

● Policy based

http://msdn.microsoft.com/en-us/library/ee395415.aspx

Ad Hoc Signatures

• Create Short Dated Shared Access Signature

● Signedresource Blob or Container

● AccessPolicy Start, Expiry and Permissions

● Signature HMAC-SHA256 of above fields

• Use case

● Single use URLs

● E.g. Provide URL to Silverlight client to upload to container

http://...blob.../pics/image.jpg?

sr=c&st=2009-02-09T08:20Z&se=2009-02-10T08:30Z&sp=w
&sig= dD80ihBh5jfNpymO5Hg1IdiJIEvHcJpCMiCMnN%2fRnbI%3d

Policy Based Signatures

• Create Container Level Policy

● Specify StartTime, ExpiryTime, Permissions

• Create Shared Access Signature URL

● Signedresource Blob or Container

● Signedidentifier Optional pointer to container policy

● Signature HMAC-SHA256 of above fields

• Use case

● Providing revocable permissions to certain users/groups

● To revoke: Delete or update container policy

http://...blob.../pics/image.jpg?

sr=c&si=MyUploadPolicyForUserID12345

&sig=dD80ihBh5jfNpymO5Hg1IdiJIEvHcJpCMiCMnN%2fRnbI%3d

Shared Access Signatures

Demo Content

• Ad hoc SAS in Cerebrata

• Container policy in Cerebrata

● Default policy

● Show use of policy

HowTo: Create Container Policy

public bool SetContainerAccessPolicy(string containerName,

 SortedList<string, SharedAccessPolicy> policies)

{

 try {

 CloudBlobContainer container = BlobClient.GetContainerReference(containerName);

 BlobContainerPermissions permissions = container.GetPermissions();

 permissions.SharedAccessPolicies.Clear();

 if (policies != null) {

 foreach(KeyValuePair<string, SharedAccessPolicy> policy in policies)

 {

 permissions.SharedAccessPolicies.Add(policy.Key, policy.Value);

 }

 }

 container.SetPermissions(permissions);

 return true;

 }

 catch (StorageClientException ex) {

 if ((int)ex.StatusCode == 404) {

 return false;

 }

 throw;

 }

}

What Are Snapshots?

• Create a point in time read-only copy of a blob

• Every snapshot creates a new read only point in time

copy

• Restore snapshots using copy blob

• Cleanup your snapshots

• Charged only for unique blocks or pages i.e. reuse

blocks or pages

● For reuse, use WritePages or PutBlock & PutBlockList

http://msdn.microsoft.com/en-us/library/dd894037.aspx

What does unique mean?

A ID=1

BB ID=2

Base blob = alphabets.txt
#1 snapshot=2011-04-
10T19:26:24.8690267Z

A ID=1

BB ID=2

What does unique mean?

A ID=1

BB ID=2

Base blob = alphabets.txt

CCC ID=3

#2 snapshot=2011-05-
10T19:26:24.8690267Z

A ID=1

BB ID=2

CCC ID=3

#1 snapshot=2011-04-
10T19:26:24.8690267Z

A ID=1

BB ID=2

A ID=1

BB ID=2

Base blob = alphabets.txt

What does unique mean?

A ID=1

BB ID=2

Base blob = alphabets.txt

CCC ID=3

#3 snapshot=2011-05-
10T19:28:24.8690267Z

BB ID=2

CCC ID=3

A ID=1 A #2 snapshot=2011-05-
10T19:26:24.8690267Z

A ID=1

BB ID=2

CCC ID=3

#1 snapshot=2011-04-
10T19:26:24.8690267Z

A ID=1

BB ID=2

HowTo: Create Snapshot

CloudBlobContainer container =

BlobClient.GetContainerReference(containerName);

CloudBlob blob = container.GetBlobReference(blobName);

blob.CreateSnapshot();

Content Delivery Network (CDN)

• Scenario

● Frequently accessed blobs

● Accessed from around the world

• Windows Azure Content Delivery Network (CDN) provides high-bandwidth global

blob content delivery
• 20 locations globally (US, Europe, Asia, Australia and South America), and growing

• Same experience for users no matter how far they are from the geo-location where the storage

account is hosted

• Blob service URL vs CDN URL:

● Windows Azure Blob URL: http://images.blob.core.windows.net/

● Windows Azure CDN URL: http://<id>.vo.msecnd.net/

● Custom Domain Name for CDN: http://cdn.contoso.com/

• Cost

● US located CDN nodes 15c/GB + 1c/10,000 txn

● Rest of World 20c/GB + 1c/10,000 txn

● Traffic from Storage node to edge

node at standard rates

http://images.blob.core.windows.net/
http://sally.blob.cdn.core.windows.net/
http://sally.blob.cdn.core.windows.net/

Azure Content Delivery Network

To Enable CDN:

 Register for CDN via Dev Portal

 Set container images to public

Windows Azure Blob
Service

pic1.jpg

Content Delivery Network
Edge Location

Edge Location Edge Location

http://guid01.vo.msecnd.net/images/pic.1jpg

http://sally.blob.core.windows.net/images/pic1.jpg

http://sally.blob.core.windows.net/

http://guid01.vo.msecnd.net/

pic1.j

pg

404

pic1.jpg

TTL

CDN

Demo Content

• Static website served from Blob Storage

• CDN configuration

• Static website served from CDN

Tips & Tricks for Blobs

• Performance best practices see Azurescope

• No need to rewrite existing System.IO-based applications

● Use Drives instead of raw blob access (see next chapter)

• Upload/download large blobs in chunks in parallel

• Use snapshot feature for backup purposes

• Combine blobs into containers intelligently

● E.g. bulk deletes for logs

• Intelligently combine different storage mechanisms

● SQL Azure for structured data, store blobs in Azure Blob storage

● Note: No distributed transactions from SQL Azure to Windows Azure Storage

• Keep garbage collection in mind

http://azurescope.cloudapp.net/

DRIVES

Windows Azure Drives

Windows Azure Drives

• Durable NTFS volume for Windows Azure Instances

● Use existing NTFS APIs to access a network attached durable drive

● Use System.IO from .NET

• Benefits

● Move existing apps using NTFS more easily to the cloud

● Durability and survival of data on instance recycle

• A Windows Azure Drive is a NTFS VHD Page Blob

● Mounts Page Blob over the network as an NTFS drive

● Local cache on instance for read operations

● All flushed and unbuffered writes to drive are made durable to the

Page Blob

Windows Azure Drive Capabilities

• A Windows Azure Drive is a Page Blob formatted as a NTFS single volume

Virtual Hard Drive (VHD)

● Drives can be up to 1TB

• A Page Blob can be mounted:

● On one instance at a time for read/write

● Using read-only snapshots to multiple instances at once

• An instance can dynamically mount up to 16 drives

• Remote Access via standard BlobUI

● Can‟t remotely mount drive.

● Can upload the VHD to a Page Blob using the blob interface, and then mount it

as a Drive

● Can download the VHD to a local file and mount locally

Drive Details

• Operations performed via Drive API not REST Calls

• Operations on Drives

● CreateDrive

• Creates a new NTFS formatted VHD in Blob storage

● MountDrive/UnmountDrive

• Mounts a drive into Instance at new drive letter

• Unmounts a drive freeing drive letter

● Get Mounted Drives

• List mounted drives; underlying blob and drive letter

● Snapshot Drive

• Create snapshot copy of the drive

Windows Azure Drives

• Drive is a formatted page blob stored

in blob service

• Mount obtains a blob lease

• Mount specifies amount of local

storage for cache

• NTFS flushed/unbuffered writes

commit to blob store before returning

to app

• NTFS reads can be served from local

cache or from blob store (cache miss)

 Windows Azure

Blob Service

Application

Lease

Drive X:

Cloud Drive Client Library Sample

CloudStorageAccount account =

 CloudStorageAccount.FromConfigurationSetting("CloudStorageAccount");

CloudDrive.InitializeCache(localCacheDir, cacheSizeInMB);

CloudDrive drive = account.CreateCloudDrive(pageBlobUri);

drive.Create(1000 /* sizeInMB */);

string pathOnLocalFS = drive.Mount(cacheSizeInMB,

 DriveMountOptions.None);

//Use NTFS APIs to Read/Write files to drive

//Snapshot drive while mounted to create backups

Uri snapshotUri = drive.Snapshot();

drive.Unmount();

Failover with Drives

• Must issue NTFS Flush command to persist data

● Use System.IO.Stream.Flush()

• Read/Write Drives protected with leases

● 1 Minute lease expiry

● Maintained by Windows Azure OS Driver

● Unmount on RoleEntryPoint.OnStop

• On failure

● Lease will timeout after 1 minute

● Re-mount drive on new instance

Drives

Demo Content

• WAPTK Lab „Exercise 4: Working with Drives“

• Show Windows Azure Drives in Storage

Emulator

• Create VHD with Windows 7

• Upload VHD

http://msdn.microsoft.com/en-us/wazplatformtrainingcourse_exploringwindowsazurestoragevs2010_topic5

TABLES

Windows Azure Table Store

Tables

• NoSQL, not an RDBMS!

● Limited transcations

● No foreign keys

● Only a single index/table

● No stored procs/funcs

● Limited query capabilities

● Etc.

• OData protocol is the native protocol

● From .NET: WCF Data Services LINQ

http://en.wikipedia.org/wiki/NoSQL
http://www.odata.org/

Table Storage Concepts

Entity Table Account

contoso

customers

Name =…

Email = …

Name =…

EMailAdd= …

photos

Photo ID =…

Date =…

Photo ID =…

Date =…

Table Operations

• Table

● Create, Query, Delete

● Tables can have metadata

• Entities

● Insert

● Update

• Merge – Partial update

• Replace – Update entire entity

● Delete

● Query

● Entity Group Transactions

• Multiple CUD Operations in a single atomic transaction

Entity Properties

• Entity can have up to 255 properties

● Up to 1MB per entity

• Mandatory Properties for every entity

● PartitionKey & RowKey (string; only indexed properties)

● Uniquely identifies an entity

● Defines the sort order

● Timestamp

● Optimistic Concurrency. Exposed as an HTTP ETag

• No fixed schema for other properties

● Each property is stored as a <name, typed value> pair

● No schema stored for a table

● Properties can be the standard .NET types

● string, binary, bool, DateTime, GUID, int, int64, and double

First Last Birthdate

Kim Akers 2/2/1981

Nancy Anderson 3/15/1965

Mark Hassall May 1, 1976

Fav Sport

Canoeing

No Fixed Schema

First Last Birthdate

Kim Akers 2/2/1981

Nancy Anderson 3/15/1965

Mark Hassall May 1, 1976

Querying

?$filter=Last eq „Akers‟

Purpose of the PartitionKey

• Entity Locality

● Entities in the same partition will be stored together
– Efficient querying and cache locality

– Endeavour to include partition key in all queries

• Entity Group Transactions

● Atomic multiple Insert/Update/Delete in same partition in a single transaction

• Table Scalability

● Target throughput – 500 tps/partition, several thousand tps/account

● Windows Azure monitors the usage patterns of partitions

● Automatically load balance partitions
– Each partition can be served by a different storage node

– Scale to meet the traffic needs of your table

PartitionKey

(Category)

RowKey

(Title)

Timestamp ModelYear

Bikes Super Duper Cycle … 2009

Bikes Quick Cycle 200 Deluxe … 2007

… … … …

Canoes Whitewater … 2009

Canoes Flatwater … 2006

PartitionKey

(Category)

RowKey

(Title)

Timestamp ModelYear

Rafts 14ft Super Tourer … 1999

… … … …

Skis Fabrikam Back Trackers … 2009

… … … …

Tents Super Palace … 2008

PartitionKey

(Category)

RowKey

(Title)

Timestamp ModelYear

Bikes Super Duper Cycle … 2009

Bikes Quick Cycle 200 Deluxe … 2007

… … … …

Canoes Whitewater … 2009

Canoes Flatwater … 2006

Rafts 14ft Super Tourer … 1999

… … … …

Skis Fabrikam Back Trackers … 2009

… … … …

Tents Super Palace … 2008

Partitions and Partition Ranges

Tables

Demo Content

• Table management with Cerebrata

• If necessary

● Intro to OData with WCF data services and Fiddler

• WPF demo application

● Similar to WAPTK „Exercise 1: Working with

Tables“

● Create table

● Add some rows (demo batching)

● Simple queries with LINQ

http://msdn.microsoft.com/en-us/wazplatformtrainingcourse_exploringwindowsazurestoragevs2010_topic2
http://msdn.microsoft.com/en-us/wazplatformtrainingcourse_exploringwindowsazurestoragevs2010_topic2

Tables – Best Practices & Tips

• Use clustered index in queries for performance

● Filter on partition key/row key

• Limit large scans

• Expect continuation tokens for queries that scan

● Split “OR” on keys as individual queries

• Point query throws an exception if resource does not exist.

● DataServiceContext.IgnoreResourceNotFoundException = true

• For “read only” scenarios turn off tracking

● DataServiceContext.MergeOption = MergeOption.NoTracking

• Follow performance tips by Microsoft

http://social.msdn.microsoft.com/Forums/en-US/windowsazure/thread/d84ba34b-b0e0-4961-a167-bbe7618beb83

Tables – Best Practices & Tips

• Entity Group Transaction

● Get transaction semantics

• Note that property names are stored for each entitiy

● Influences amount of storage you have to pay for

• Do not reuse DataServiceContext across multiple logical

operations and discard on failures

• AddObject/AttachTo can throw exception if entity is already

being tracked

• Replicate data instead of joins

● Remember, storage is cheap

Tables – Best Practices & Tips

• Keep garbage collection in mind

● Delete operations are done asynchronously

• Reduce costs with batching

QUEUES

Windows Azure Queues

Queue Storage Concepts

Message Queue Account

order
processing

 customer ID
 order ID
 http://…

 customer ID
 order ID
 http://…

adventureworks

Typical Scenario

Clients
Webserver

DB-Server
http GET (Form)

http POST (Reg.)

Events

External

Partner

Save Reg.

Confirm.

Doc

http GET (Conf.)

Conf.

Typical Scenario

• Webserver is blocked by long running

requests

• Web server„s CPU is not the bottleneck

● Dependency on external service (Credit card

check)

● Dependency on database (Processing time,

locking)

• Doesn„t scale at all!

87

Results – Processing Time

HTTP

Errors

Results – CPU Utilization

~17,5% CPU

Async Scenario With Queues

Clients Webserver

Reg.

Queue

Table

Worker

Blob
External

partner

DB

Delegate task

to worker

Payload via

Table Store

Results – CPU Utilization

~40% CPU

~5% CPU

Results – Processing Time

Response

Time

Queue

Length

Loosely Coupled Workflow with Queues

• Enables workflow between roles

● Load work in a queue

• Producer can forget about message once it is in queue

● Many workers consume the queue

● For extreme throughput (>500 tps)

• Use multiple queues

• Read messages in batches

• Multiple work items per message

Queue

Input Queue (Work Items)

Web Role

Web Role

Web Role

Queue Details

• Simple asynchronous dispatch queue

● No limit to queue length subject to storage limit

● 8kb per message

● ListQueues - List queues in account

• Queue operations

● CreateQueue

● DeleteQueue

● Get/Set Metadata

● Clear Messages

• Message operations

● PutMessage– Reads message and hides for time period

● GetMessages – Reads one or more messages and hides them

● PeekMessages – Reads one or more messages w/o hiding them

● DeleteMessage – Permanently deletes messages from queue

Queue’s Reliable Delivery

• Guarantee delivery/processing of messages

(two-step consumption)

● Worker Dequeues message and it is marked as

Invisible for a specified “Invisibility Time”

● Worker Deletes message when finished

processing

● If Worker role crashes, message becomes visible

for another Worker to process

2
1

1
1

C1

C2

Removing Poison Messages

1
1

2
1

3 4
0

Producers Consumers

P2

P1

3
0

2. GetMessage(Q, 30 s) msg 2

1. GetMessage(Q, 30 s) msg 1

1
1

2
1

1
0

2
0

C1

C2

Removing Poison Messages

3 4
0

Producers Consumers

P2

P1

1
1

2
1

2. GetMessage(Q, 30 s) msg 2

3. C2 consumed msg 2

4. DeleteMessage(Q, msg 2)

7. GetMessage(Q, 30 s) msg 1

1. GetMessage(Q, 30 s) msg 1

5. C1 crashed

1
1

2
1

6. msg1 visible 30 s after Dequeue 3
0

1
2

1
1

1
2

C1

C2

Removing Poison Messages

3 4
0

Producers Consumers

P2

P1

1
2

2. Dequeue(Q, 30 sec) msg 2

3. C2 consumed msg 2

4. Delete(Q, msg 2)

7. Dequeue(Q, 30 sec) msg 1

8. C2 crashed

1. Dequeue(Q, 30 sec) msg 1

5. C1 crashed

10. C1 restarted

11. Dequeue(Q, 30 sec) msg 1

12. DequeueCount > 2

13. Delete (Q, msg1) 1
2

6. msg1 visible 30s after Dequeue

9. msg1 visible 30s after Dequeue

3
0

1
3

1
2

1
3

HowTo: Removing Poison Messages

while (true) {

 // Retrieve message from queue

 var msg = cloudStorage.OrderImportQueue.GetMessage(TimeSpan.FromSeconds(15));

 if (msg != null) {

 try {

 // Message Processing

 […]

 }

 catch (Exception) {

 if (msg.DequeueCount > 1) {

 // Remove poisened message

 cloudStorage.OrderImportQueue.DeleteMessage(msg);

 }

 }

 }

 else {

 Thread.Sleep(1000);

 }

}

Queue Tips & Tricks

• Keep queue messages small

● Use other storage mechanism for payload

• Use multiple queues (parallel) for high throughput

• Handle poisoned messages

• Only polling, no push mechanisms

● If you need push use e.g. WCF instead

• Don„t use queues for producer/consumer scenarios

inside process

● Use .NET 4 concurrent collections instead

Queues

Demo Content

• Queue management with Cerebrata

• If necessary

● Speak about producer/consumer pattern

● Concurrent queues in .NET

• Split existing web application into web/worker

role

Windows Azure Storage Summary

• Fundamental data abstractions to build your

applications

● Blobs – Files and large objects

● Drives – NTFS APIs for migrating applications

● Tables – Massively scalable structured storage

● Queues – Reliable delivery of messages

• Easy to use via the Storage Client Library

• Hands on Labs

SQL AZURE

SQL Server in the Cloud

SQL Azure Database

Comparing SQL Server and SQL Azure

• Goal is symmetry:

● Database - T-SQL, features

● Tools

● Connectivity

● Frameworks

• Some variations exist:

● Table design

● Some features

● Scale strategy

● Overview: http://msdn.microsoft.com/en-us/library/ff394102.aspx

• Differences are being reduced

http://msdn.microsoft.com/en-us/library/ff394102.aspx
http://msdn.microsoft.com/en-us/library/ff394102.aspx
http://msdn.microsoft.com/en-us/library/ff394102.aspx
http://msdn.microsoft.com/en-us/library/ff394102.aspx

Application Topologies

From

Windows Azure
From Outside

Microsoft Datacenter

From Windows Azure & Outside

Microsoft Datacenter

Application / Browser

Windows

Azure

SQL Azure

Code Near

App Code / Tools

SQL Azure

Microsoft

Datacenter

Code Far Hybrid

Microsoft

Datacenter

SQL Azure

Microsoft

Datacenter Windows

Azure

SQL

Azure

Data

Sync

App Code / Tools

Architecture

• Shared infrastructure at SQL database and

below
● Request routing, security and isolation

• Scalable technology provides the glue
● Automatic replication and failover

• Provisioning, metering and billing

infrastructure

Database Replicas

Replica 1

Replica 2

Replica 3

DB

Replica 4

!

Behind the Scenes of SQL Azure

Application

Internet

LB TDS (tcp)

TDS (tcp)

TDS (tcp)

Apps use standard SQL client

libraries: ODBC, ADO.Net, PHP,

…

Load balancer forwards „sticky‟

sessions to TDS protocol tier

Gateway Gateway Gateway Gateway Gateway Gateway

Scalability and Availability: Fabric, Failover, Replication, and Load balancing

SQL SQL SQL SQL SQL SQL

Gateway: TDS protocol gateway, enforces AUTHN/AUTHZ policy; proxy to backend

SQL

Service Provisioning Model

• Each account has zero or more logical

servers
● Provisioned via a common portal

● Establishes a billing instrument

• Each logical server has one or more

databases
● Contains metadata about database & usage

● Unit of authentication, geo-location, billing, reporting

● Generated DNS-based name

• Each database has standard SQL objects
● Users, Tables, Views, Indices, etc

● Unit of consistency

 Account

 Server

 Database

Connection Model

• SQL Azure exposes native SQL Server TDS protocol

• Use existing client libraries

● ADO.NET, ODBC, PHP

● OLE DB not officially supported

• Client libraries pre-installed in Windows Azure roles

• Support for ASP.NET controls

• Applications connect directly to a database

● Cannot hop across DBs (no USE)

Connecting to SQL Azure

• SQL Azure connection strings follow normal SQL syntax

• Applications connect directly to a database

● “Initial Catalog = <db>” in connection string

● No support for context switching (no USE <db>)

• Encryption security

● Set Encrypt = True, only SSL connections are supported

● TrustServerCertificate = False, avoid Man-In-The-Middle-Attack!

• Format of username for authentication:

● ADO.Net:

Data Source=server.database.windows.net;

User ID=user@server;Password=password;...

• Setup your firewall rules first!

Dealing with throttling

• Throttling provides a good experience to all

databases on a single node

• SQL Azure is able to monitor and rebalance

databases automatically

• Rebalancing uses a swap / move replica procedure

• Resource reservation is coming for a more

predictable experience

What causes throttling?

• Lock Consumption

● Sessions using > 1M locks

• Excessive Log Usage

● Single transaction consuming > 1GB

• Uncommitted Transactions

● Single transaction consuming > 20% of the log

• Excessive TempDB usage

● Session using > 5GB of TempDB

• Excessive Memory Usage

● When the node experiences memory contention…

• Sessions using > 16MB for > 20 seconds are terminated in descending order

• Idle Connections (30 mins)

Source: TechEd 2011 North America

Logical vs. Physical Administration

• SQL Azure focus on logical administration

● Schema creation and management

● Query optimization

● Security management (Logins, Users, Roles)

• Service handles physical management

● Automatically provides HA “out of box”

● Transparent failover in case of failure

● Load balancing of data to ensure SLA

Deployment

• Deploy via T-SQL scripts

• Support for SQL Server Data-Tier Applications

(DAC) feature

● DACPAC/BACPAC is unit of deployment

● Cloud or on-premise is a deployment time choice

• Create Logical Server in same region as Windows

Azure Affinity Group for code-near architecture

• Database Copy

● Template databases

Security Model

• Uses regular SQL security model

● Authenticate logins, map to users and roles

● Authorize users and roles to SQL objects

• Support for standard SQL Auth logins

● Username + password

• No Windows Auth

● If needed use Azure Connect

• Domain-join roles

• Use on-premise SQL Server

SQL Azure

Demo Content

• Server and database creation in admin portal

• Server management in admin portal

• Management studio access

• Deployment

● SQL Azure Migration Wizard

● BACPAC Deployment

● Database Copy

• Programmability

● ADO.NET access to SQL Azure

● Entity Framework access to SQL Azure

SQL Azure Compatibility

Currently Supported

• Tables, indexes and views

• Stored Procedures

• Triggers

• Constraints

• Table variables,

session temp tables (#t)

• Spatial types, HierarchyId

Not Currently Supported

• Data Types

● XML, Sparse Columns, Filestream

• Partitions

• Full-text indexes

• SQL-CLR

• Tables without clustered indexes

● Needed for replication

• Collations

Database Editions
• Two SQL Azure Database SKUs: Web & Business

● Web Edition: 1 GB @ $9.99/month | 5 GB @ $49.95/month

● Business Edition: Up to 50 GB @ $99.99/10 GB/month
10 GB @ $99.99 | 20 GB @ $199.98 | 30 GB @ $299.97 | 40 GB @ $399.96 | 50 GB @ $499.95

• You specify Web or Business Edition

● Web: EDITION = web

● Business: EDITION = business

• You specify MAXSIZE

● Web: MAXSIZE = 1GB | 5GB

● Business: MAXSIZE = 10GB | 20GB | 30GB | 40GB | 50GB

• This is the maximum size we will not let you grow beyond

• You will only be charged for the actual peak size in any one day

rounded up

• For example, a 3.4 GB Web Edition will be charged 5GB rate.

CREATE DATABASE foo1 (EDITION='business', MAXSIZE=50GB);

CREATE DATABASE foo2 (EDITION='business', MAXSIZE=30GB);

ALTER DATABASE foo2 MODIFY (EDITION='web', MAXSIZE=5GB);

What’s coming in Next Service Release?

• No-code OData endpoints

● Already in SQL Azure Labs

• Point in Time Restore Preview

● Restore a database to a specific point in time

● Provides a 2 week window

• Support for Windows Azure Platform CoAdmin

• DB Import & Export in the Portal

• RePowering SQL Azure with SQL Server Denali Engine

• Sparse Columns

• Localized Portal and Engine error messages

Source: TechEd 2011 North America

http://www.odata.org/blog/2010/3/18/got-sql-azure-then-you've-got-odata

OData and SQL Azure

Demo Content

• Show OData configuration in SQL Azure Labs

• Show queries to OData endpoint in IE

https://www.sqlazurelabs.com/ConfigOData.aspx

SCALING DATABASE

APPLICATIONS

SQL Azure Future

Cloud

DB Failover

Cluster Web Farm

Load

Balancer

Typical Architecture

Clients

Costs/month:

In Azure ~150€

Cloud

Web Farm

Load

Balancer

Solution = Sharding

Clients

Costs/month:

In Azure ~150€

 no add. costs!

DB Load

Balancing Cluster

of Failover

Clusters

Scaling database applications

• Scale up

● Buy large-enough server for the job

• But big servers are expensive!

● Try to load it as much as you can

• But what if the load changes?

• Provisioning for peaks is expensive!

• Scale-out

● Partition data and load across many servers

• Small servers are cheap! Scale linearly

● Bring computational resources of many to bear

• 800 little servers is very fast

● Load spikes don‟t upset us

• Load balancing across the entire data center

Scale-out with SQL Azure Today

• Elastic Provisioning of Databases

● CREATE DATABASE and go

● No VMs, no servers

• Pay-as-you-go business model

● Don‟t need it --- DROP it

• Zero Physical Administration

● Built-in High Availability, patching, maintenance

• Database Copy, SQL Azure Data Sync

Scale-out for Multi-tenant applications

• Put everything into one DB? Too big…

• Create a database per tenant? Not bad…

• Sharding Pattern: better

● Application is already prepared for it!

T1 T2 T3 T4 T5

T6 T7 T8 T9 T10

T11 T12 T13 T14 T15

T16 T17 T18 T19 T20

T1 T2 T3 T4 T5

T6 T7 T8 T9 T10

T11 T12 T13 T14 T15

T16 T17 T18 T19 T20

All my data

is handled by

one DB on one

server

Sharding Pattern

• Linear scaling through database independence

● No need for distributed transactions in common cases

• Engineered partitioning

● Rather than complete transparency

• Local access for most

● Connection routing

● Query, transaction scoping

• Distributed access for some

● Fan-out expensive computation

App

Engineered Partitioning: Platform Capabilities

• Provisioning

● Growing and shrinking capacity

• Managing

● Upgrading, patching, HA for lots of databases

• Routing

● Where is the directory?

● How to scale it and use it?

• Partition Management

● Splitting and Merging, without loss of availability

● Fan-out

Covered by

SQL Azure

today

Coming up

in SQL

Azure:

Federations

Distribution of Data

• Partitioned

● Spread across member machines

● Each piece is on one machine (+HA)

● Most of the data!

• Centralized

● Only available in one place

● Read and write, but not too much

• Replicated

● Copied to all member machines

● Can be read anywhere (reference)

● Should not be written too much

Data1 Data2 Data3 Data4 Data5

Con-

fig

SQL Azure Federations: Concepts

• Federation

● Represents the data being sharded

• Federation Key

● The value that determines the routing of a piece

of data

• Atomic Unit

● All rows with the same federation key value:

always together!

• Federation Member (aka Shard)

● A physical container for a range of atomic units

• Federation Root

● The database that houses federation directory

Root

Federation “CustData”

Member: [min, 100)

AU

PK=

5

AU

PK=25

AU

PK=35

Member: [100, 488)

AU

PK=105

AU

PK=235

AU

PK=365

Member: [488, max)

AU

PK=555

AU

PK=2545

AU

PK=3565

(Federation Key: CustID)

Creating a Federation

• Create a root database

● CREATE DATABASE SalesDB

● Location of partition map

● Houses centralized data

• Create the federation in root

● CREATE FEDERATION Orders_Fed

(RANGE BIGINT)

● Specify name, federation key type

• Start with integral, guid types

● Creates the first member, covering the entire

range

SalesDB

Federation “Orders_Fed”
(Federation Key: CustID)

Member: [min, max)

Creating the schema

• Federated tables

● CREATE TABLE orders (…) FEDERATE ON

(customerId)

● Federation key must be in all unique indices

• Part of the primary key

● Value of federation key will determine the

member

• Reference tables

● CREATE TABLE zipcodes (…)

● Absence of FEDERATE ON indicates

reference

• Centralized tables

● Create in root database

Federation “Orders_Fed”
(Federation Key: CustID)

Member: [min, max)

SalesDB

orders

Products

zipcode

Splitting and Merging

• Splitting a member

● When too big or too hot

● ALTER FEDERATION Orders_Fed SPLIT

(100)

● Creates two new members

• Splits (filtered copy) federated data

• Copies reference data to both

● Online!

• Merging members

● When too small

● ALTER FEDERATION Orders_Fed

MERGE (200)

● Creates new member, drops old ones

Federation “Orders_Fed”
(Federation Key: CustID)

Member: [min, max)

SalesDB

orders

Products

zipcode

Member: [min, 100)

orders zipcode

Member: [100, max)

zipcode orders

Connecting and Operating

• Connect to atomic unit

● USE FEDERATION Orders_Fed (56) WITH

FILTERING=ON

● Connection routed to member containing 56

● Only data with federation key value 56 is visible

• Plus reference data

● Safe: atomic unit can never be split

• Connect to entire federation member

● USE FEDERATION Orders_Fed (56) WITH

FILTERING=OFF

● Connection routed to member containing 56

● All data within the member database is visible

● Dangerous: federation member can be split

Member: [min, 100)

AU

PK=5

AU

PK=25

AU

PK=56

App

zipcode

Schema Distribution

• Federation members can have different schemas at a point in time:

● Temporary, while schemas are being upgraded

● Temporary, while customer is testing new schema on some shards

● Permanently, because shards are different

• To alter schema:

● Manually

• Connect to each federation member (USE FEDERATION Orders(56) WITH

FILTER=OFF)

• Alter it (ALTER TABLE Customers …)

● Future: schema-distribution service

• Connect to root

• Manage and apply schemas asynchronously

Sharding in SQL Azure: Beyond v1

• Schema Management

● Allow multi version schema deployment and management across

federation members.

• Fan-out Queries

● Allow single query that can process results across large number of

federation members.

• Auto Repartitioning

● SQL Azure manages the federated databases for you through

splits/merges based on some policy (query response time, db size etc)

• Multi Column Federation Keys

● Federate on enterprise_customer_id+account_id

HowTo: Setup Federation

CREATE FEDERATION Orders_Fed (RANGE BIGINT)

USE FEDERATION Orders_Fed(0) WITH FILTERING=OFF

CREATE TABLE orders(orderidbigint, odatedatetime, customeridbigint,

primary key (orderid, customerid))

FEDERATE ON (customerid)

CREATE UNIQUE INDEX o_idx1 on orders(customerid, odate)

CREATE INDEX o_idx2 on orders(odate)

CREATE TABLE orderdetails(orderdetailidbigint, orderidbigint, partidbigint, customeridbigint,

 primary key (orderdetailid, customerid))

FEDERATE ON (customerid)

ALTER TABLE orderdetails add constraint orderdetails_fk1 foreign key(orderid,customerid)

references orders(orderid,customerid)

CREATE TABLE uszipcodes(zipcodenvarchar(128) primary key, state nvarchar(128))

HowTo: Work With Federation

Connect to: InitialCatalog=‘SalesDB’

– get some regular work done (within customer 239)

USE FEDERATION Orders_fed(239) WITH FILTERING=ON

SELECT * FROM Orders JOIN OrderDetailsON …

INSERT INTO Orders (customerid, orderid, odate) VALUES (239, 2, ‘5/7/2010’)

– get some cross-customer work done

USE FEDERATION Orders_fed(0) WITH FILTERING=OFF

DELETE from Orders WHERE odate < ‘1/1/2000’

- Repeat for other members…

-- go back to root

USE FEDERATION ROOT

UPDATE CleanupSchedule set LastCleanupDate = GETSYSTIME()

HowTo: Change Federation

--Day#2 business grows!

ALTER FEDERATION Orders_Fed SPLIT AT(1000)

--Day#3 black friday!

ALTER FEDERATION Orders_Fed SPLIT AT(100)

ALTER FEDERATION Orders_Fed SPLIT AT(200,300,400…)

--Day#4 recession hits!

ALTER FEDERATION Orders_Fed MERGE AT(100)

--Day#5 oh boy… double dip.

ALTER FEDERATION Orders_Fed MERGE AT(200,300,400…)

Federation Technology Preview Nominations

• Now Open! Federations Technology Preview

Program Nominations

• Information on How to Nominate your Application

● http://blogs.msdn.com/cbiyikoglu/

● Click on the Survey Link

● Fill-out the Survey Questions

● Wait for communication from the technology preview team!

Source: TechEd 2011 North America

http://blogs.msdn.com/cbiyikoglu/

SQL AZURE DATA SYNC

SQL Azure Future

Scenarios

On-Premises Cloud

E.g. Reporting

E.g. Web site

reference data

E.g. Geo-located web

applications

E.g. Traffic manager

E.g. Single location,

branch office, retail

E.g. One-way publish,

two-way sharing,

aggregation

SQL Azure Data Sync – Key Features

• Elastic Scale

● Service scales as resources requirements grow

• No-Code Sync Configuration

● Easily define data to be synchronized

• Schedule Sync

● Choose how often data is synchronized

• Conflict Handling

● Handle issues where same data is changed in multiple locations

• Logging and Monitoring

● Administration capabilities for tracking data and monitoring potential

issues

Sync End to End Scenarios

On-Premises
Applications

Offline
Applications

Sync

SQL Azure Database

Sync

http://azure.com

Retail &
Remote
Offices

http://azure.com/

V1

Planned UI

Last Writer Win

Bi-directional

30 Minutes

Data Sync Service

Sync Groups

Databases

Cloud

Sales Data

On-Premises

Customer Data

Wirgccmqxs

Sales_Cloud

HR_Cloud

Agent_NY

Sales_Data

HR Data

Home

Hosted Service, Storage,
Accounts and CDN

Database

Reporting

Service Bus, Access
Control & Caching

Virtual Network

Data Synchronization

Windows Azure Platform Billing | Nina Hu | Sign Out

Take me back to the old portal | © 2010 Microsoft Corporation Privacy Statement Term of User | Feedback

Save

Manage Changes

Discard

Sync Group Name: Sales Data (Edit Name)

Topology:

 Sales_Cloud
 North Center US | Online
 1GB / 4GB

 Sales_Asia
 Japan | Online
 2.3 GB / 4GB

 Sales_Europe
 Europe | Online
 1.3 GB/4GB

Cloud
On-Premises

 Sales_Data_NY
 Unkown

Agent_NY
Offline

 Sales_Data_LA
 Online

Agent_LA
Online

Configuration:

Conflict Resolution:

Sync Direction:

Synced Tables:

Column Name Filter Value

ID

Name

State

Address

Phone

WA

Synced Columns:
Hub

 Click to add a
 new SQL Azure
 database

 Click to add a
 new On-Premises
 database

Customer

Sync Schedule: Every

Sync Scope: Edit Scope Setting

Sync Group

Create Remove De-activate

Status: Activated
Last synced at 12:00pm, Feb 24 2011 | Next sync in 21 minutes

Database

UnregisterRemove from
Sync Group

Add

Table View

Source: TechEd 2011 North America

SQL Azure Data Sync Roadmap

• Limited CTP2:

● Available now, but closed

• Public CTP3:

● Q3 2011

• V1:

● Q4 2011

Source: TechEd 2011 North America

Summary

SQL Azure provides a highly available

cloud database service.

• Managed Service

• Scale On Demand

• Innovate Faster

Your Feedback is Important

Please fill out a session evaluation form.

Thank you!

